

DHANAMANJURI UNIVERSITY

Examination, 2023 (Dec)

Four year course B.Sc. 1st Semester

Name of Programme : B.A/B.Sc. (Honours)

Semester : I

Paper Type : SEC (Theory)

Paper Code : SMA-001

Paper Title : Linear Programming and Application

Full Marks : 40

Pass Marks : 16

Duration: 2 Hours

The figures in the margin indicate full marks for the questions

All the questions.

1. Answer the following question:

- a) State three characteristics of canonical form of LPP. 3
- b) A hospital dietician wishes to find the combination of two foods A and B that contain atleast 0.5mg of thiamine and atleast 600 calories. Each ounce of A contains 0.12 mg of thiamine and 100 calories while each ounce of B contains 0.80 mg of thiamine and 150 calories. Each food costs 10 paise per ounce .Formulate the linear programming problem, specifying how many ounces of each food A and B should be combined to get the cheapest combination of two foods. Solve it graphically. 3+3+4=10
2. Define artificial variables. Write an algorithm for solving a given LPP by using **Charne's penalty method.** 10
3. a) Define convex set. Prove that intersection of two convex sets is also a convex set.

b) Define non degenerate basic solution. Determine all the basic solutions of the following problem

$$\text{maximise } Z = x_1 - 2x_2 + 4x_3$$

subject to the constraints

$$x_1 + 2x_2 + 3x_3 = 7$$

$$3x_1 + 4x_2 + 6x_3 = 15$$

Or

5+5=10

Define slack and surplus variables. Solve the LPP by using simplex method

$$\text{maximise } z = x_1 - x_2 - x_3 + x_4$$

subject to the constraints

$$5x_1 - x_2 + 2x_3 + 6x_4 \leq 20$$

$$2x_1 + 3x_2 + 4x_3 - 5x_4 \leq 16$$

$$x_1 + 2x_2 - 3x_3 + x_4 \leq 2$$

$$x_1, x_2, x_3 \text{ and } x_4 \geq 0$$

2+8=10

4. Solve by using Charne's penalty Big M method.

$$\text{Minimise, } z = 3x_1 + 5x_2$$

subject to the constraints

$$x_1 + 2x_2 \geq 8$$

$$3x_1 + 2x_2 \geq 12$$

$$5x_1 + 6x_2 \leq 60, x_1, x_2 \geq 0$$

Or

10

Use Two phase method to solve the following LPP.

$$\text{Maximize } z = 3x_1 - x_2$$

subject to the constraints

$$2x_1 + x_2 \geq 2$$

$$x_1 + 3x_2 \leq 2$$

$$x_2 \leq 4$$

$$x_1, x_2 \geq 0$$
