

2021

(May)

MATHEMATICS

(Honours)

SEVENTH PAPER

(Computer Programming in C and Numerical Analysis)

Full Marks : 50

Pass Marks : 18

Time : 3 hours

The figures in the margin indicate full marks for the questions

(Attempt any five questions selecting at least two questions from each section)

SECTION – A

(Computer Programming in C)

1. (a) Distinguish between operating software and application software. Bring out the difference between compiler and interpreter. What are the advantages of high-level languages? $2+2+1=5$
(b) Write a C program to convert an octal number to its equivalent binary number. 5
2. (a) Describe the four basic data types. Write a C program to find the sum of the series $S = 1!+2!+3!+4!+\dots+10!$ $2+3=5$
(b) What is modulo operator? Explain the advantages of using symbolic constants over literal constants. What are the purpose of break statement and continue statement? $1+2+2=5$
3. (a) In a switch statement, what will happen if a break statement is omitted? Distinguish the loop control structures available in C. Explain how linear search is different from binary search? $1+2+2=5$
(b) Write a C program to find the product of two matrices and print the result. 5
4. (a) What are the parts associated with a function? What is the difference between function declaration and function definition? $2+3=5$
(b) Explain the purpose and general form of return statement. Write a C program to find the factorial of a positive integer using function. $2+3=5$

5. (a) Distinguish between actual and formal parameters in functions. Discuss the various ways of parameter passing in functions. 2+3=5

(b) What is recursion? Write a C program to find the GCD of two given positive integers using recursive function. 1+4=5

Section - B

(Numerical Analysis)

1. (a) (i) Evaluate: $\frac{\Delta^2 x^3}{Ex^3}$, the interval of differencing being unity. 2

(ii) Estimate the missing term in the following: 3

x	1	2	3	4	5	6	7
y	2	4	8	-	32	64	128

Explain why the result differs from 16.

(b) Apply Newton-Gregory forward interpolation formula to the following table which gives the amount of a chemical dissolved in water and compute the amount dissolved at 22° : 5

Temp:	10°	15°	20°	25°	30°	35°
Solubility:	19.97	21.51	22.47	23.52	24.65	25.89

2. (a) Using Lagrange's interpolation formula, find $f(10)$ from the following table: 5

x	5	6	9	11
$f(x)$	12	13	14	16

(b) Find $f'(10)$ from the following table: 5

x	3	5	11	27	34
$f(x)$	-13	23	899	17315	35606

3. (a) Using Simpson's three-eighth rule, find an approximate value of $\int_0^1 \frac{2x}{1+x^2} dx$ by taking six equidistant ordinates correct up to four decimal places and obtain an approximate value of $\log_e 2$. 5

(b) Find the value of $y(1.1)$ using Runge-Kutta method of fourth order, given that

$$\frac{dy}{dx} = 3x + y^2, y=1.2 \text{ when } x=1. \quad \text{5}$$

4. (a) Using Newton-Raphson method, find a root of the equation $x^3 + 29x - 97 = 0$, which lies between 2 and 3, correct to four places of decimal. 5

(b) Apply Gauss's Elimination Method to solve the system,

5

$$5x_1 + 3x_2 + 7x_3 = 4,$$

$$x_1 + 5x_2 + 3x_3 = 2,$$

$$7x_1 + 2x_2 + 10x_3 = 5$$

5. (a) Use the method of least square polynomial approximation to fit a straight line to the following data:

5

x_i	1	2	3	4	6	8
y_i	2.4	3.1	3.5	4.2	5.0	6.0

(b) A switching path between parallel railroad tracks is to be a cubic polynomial joining positions (0,0) and (4,2) and tangents to the lines $y=0$ and $y=2$. Apply Hermite's method to find the polynomial, given

5

	x	y	y'
x_1	0	0	0
x_2	4	2	0