

DHANAMANJURI UNIVERSITY

Examination- 2023 (Dec)

Three year course B.Sc. 5th Semester

Name of Programme : B.Sc. Mathematics (Honours)

Semester : 5th

Paper Type : DSE-II (Theory)

Paper Code : EMA-304

Paper Title : Number Theory

Full Marks : 100

Pass Marks : 40 Duration: 3 Hours

The figures in the margin indicate full marks for the questions

Answer all the questions:

1. Write very short answers for the following questions: $1 \times 5 = 5$

- a) For what values of n , it has primitive roots.
- b) Define Mobius function.
- c) Define linear Diophantine equation in two variables.
- d) Is 2 a quadratic residue of 5.
- e) Define order of an integer ‘ a ’ modulo n .

2. Write short answers for the following questions: $3 \times 9 = 27$

- a) For each positive integer n , show that

$$\mu(n)\mu(n+1)\mu(n+2)\mu(n+3) = 0$$
- b) For each positive integer n , show that $n = \sum_{d|n} \Phi(d)$, where d runs through the positive divisors of n .
- c) If $a|c$ and $b|c$ with $(a, b) = 1$, then prove that $ab|c$.
- d) Verify that $1000!$ terminates in 249 zeros.
- e) Evaluate the Legendre symbol

$$\left(\begin{smallmatrix} 1234 \\ 4567 \end{smallmatrix} \right)$$

f) Find the units digit of 3^{100} .

g) If n has a primitive root then prove that it has exactly $\Phi(\Phi(n))$ of them.

h) Prove that for any odd prime p , the Legendre symbol $\left(\frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \pmod{p}$, where a is an integer that is relatively prime to p .

i) Is the congruence $x^2 \equiv -46 \pmod{17}$ solvable? Justify.

3. Answer any three:

6 × 3 = 18

a) State and prove Chinese Remainder theorem.

b) Prove that given integers a and b not both of which are zero, there exists integers x and y such that $(a, b) = ax + by$.

c) Prove that if p is prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$. Is the converse true? Justify.

d) Prove that the linear congruence $ax \equiv b \pmod{n}$ has a solution iff $d|b$, where $(a, n) = d$. Also prove that if $d|b$, then it has d mutually incongruent solutions \pmod{n} .

4. Answer any three:

6 × 3 = 18

a) Prove that Φ – *function* is multiplicative.

b) State and prove Mobius Inversion formula.

c) If n and r are positive integers with $1 \leq r < n$, then prove that the binomial coefficient $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ is an integer. Also, prove that the product of any r consecutive positive integers is divisible by $r!$.

d) If $n = P_1^{K_1} P_2^{K_2} \dots P_r^{K_r}$ is the prime factorization of $n > 1$, then prove that

$$\tau(n) = (K_1 + 1)(K_2 + 1) \dots \dots (K_r + 1) \text{ and}$$

$$\sigma(n) = \frac{P_1^{K_1+1}-1}{P_1-1} \frac{P_2^{K_2+1}-1}{P_2-1} \dots \dots \frac{P_r^{K_r+1}-1}{P_r-1}$$

5. Answer any two:

2 × 8 = 16

- Prove that 2^K has no primitive roots for any integer $K \geq 3$.
- State and prove Euler's Criterion.
- If p is a prime number and $d|p - 1$, then prove that the congruence $x^d - 1 = 0 \pmod{p}$ has exactly d solutions.

6. Answer any two:

2 × 8 = 16

- State and prove Quadratic Reciprocity law.
- Let p be an odd prime and a an odd integer with $(a, p) = 1$,
then $\left(\frac{a}{p}\right) = (-1)^{\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ka}{p}\right]}$.
- Show that for any odd prime p ,

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \pmod{8} \text{ or } p \equiv 5 \pmod{8} \end{cases}$$
