

DHANAMANJURI UNIVERSITY

Examination- 2024 (Dec)

Four year course B.Sc./B.A. 5th Semester

Name of Programme : B.Sc./B.A. Mathematics(Honours)

Paper Type : CORE XIV{Theory}

Paper Code : CMA-314

Paper Title : Ring Theory and Linear Algebra-I

Full Marks : 80

Pass Marks : 32

Duration: 3 Hours

The figures in the margin indicate full marks for the questions:

Answer all the question.

1. Choose and rewrite the correct answer: **1 × 3 = 3**

- i) Let R be the ring of all matrices of order 2×2 over integers and S be the set of 2×2 matrices of the form $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ where a, b are integers then
 - a) S is the left ideal
 - b) S is the right ideal
 - c) S is both left and right ideal
 - d) S is neither left and right ideal
- ii) If $\mathbb{Q}, \mathbb{C}, \mathbb{Q}$ are the set of reals, complex numbers and the set of rational numbers, then which one of the following is not a vector space with usual notation ?
 - a) $\mathbb{R}(\mathbb{R})$
 - b) $\mathbb{C}(\mathbb{R})$
 - c) $\mathbb{R}(\mathbb{Q})$
 - d) $\mathbb{R}(\mathbb{C})$
- iii) A linear transformation $T : V(F) \rightarrow W(F)$ is a non-singular if
 - a) $\text{Ker } T = 0$
 - b) $\text{Range } T = 0$
 - c) Rank T + Nullity T = $\dim V(F)$
 - d) $\dim V(F) = \dim W(F)$.

2. Answer the following: **1 × 6 = 6**

- i) Give an example of a division ring which is not a field.
- ii) Consider the ring $R = (0, 1, 2) \text{ mod } 3$, find the characteristic of R.
- iii) Show that $(1, i)$ forms a basis of $\mathbb{C}(\mathbb{R})$.
- iv) Differentiate a spanning set from a basis of a Finite Dimensional Vector Space $V(F)$.
- v) Define matrix of a linear transformation.
- vi) For the linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ as defined by $T(x, y, z) = (x, y)$. Determine $\ker T$.

3. Answer the following: **3 × 5 = 15**

- i) Show that union of two ideals of a ring R need not be an ideal of R with example.
- ii) Show that every field is an integral domain.
- iii) If $\{v_1, v_2, \dots, v_n\}$ be a finite subset of a vector space which forms a basis of $V(F)$, show that $v \in V(F)$ has a unique representation.
- iv) Show that intersection of two subspaces of a vector space $V(F)$ is again a subspace of $V(F)$.
- v) Show that a linear transformation is a monomorphism iff it is onto.

4. Answer the following : **4 × 5 = 20**

- i) Show that a non empty subset S of a ring R is a subring of R iff $a, b \in S \implies ab, a - b \in S$.
- ii) State and prove a necessary and sufficient condition for a non-empty subset $W(F)$ of a vector $V(F)$ to be a vector subspace.

iii) Let W be a subspace of a finite dimensional vector $V(F)$. Prove that $\dim\left(\frac{v}{w}\right) = \dim V - \dim W$.

iv) Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be defined by $T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2 - x_1 - 2x_2 + 2x_3)$. Find the condition that (x_1, x_2, x_3) is in the range of T . Also show that $\text{Rank } T = 2$.

v) For the linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by $T(x, y) = (-y, -x)$. If $\beta = \{(1, 0), (0, 1)\}$ be the standard basis of \mathbb{R}^2 then find $[T]_{\beta\beta}$.

5. Answer any two:**6×2=12**

i) Let R be a ring and I be an ideal of R , show that the quotient ring R/I from a ring.

ii) Prove that an ideal M of a commutative ring R is maximal iff R/M is a field.

iii) State and prove the fundamental theorem on Ring Homomorphism.

6. Answer any two:**6×2=12**

i) Let W_1 and W_2 be two subspaces of a vector space $V(F)$. Prove that $V(F) = W_1 \oplus W_2 \iff V(F) = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$

ii) Prove that a finite dimensional vector space $V(F)$ has a basis.

iii) Suppose S is a finite subset of a finite dimensional vector space $V(F)$ such that $V(F) = L(S)$. Show that there exists a finite subset of S which forms a basis of $V(F)$.

7. Answer any two:**6×2=12**

i) Find Range, Rank, Kernel and Nullity of the linear transformation $F : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by $F(x, y) = (x + y, y - x)$.

ii) State and Prove Sylvester's law on a linear transformation.

iii) Let V and W be two vector space of dimension m and n respectively. Show that $\text{Hom}(V, W)$ has dimension m, n .
