

DHANAMANJURI UNIVERSITY

Examination- 2024 (Dec)

Four year course B.Sc./B.A. 5th Semester

Name of Programme : B.Sc./B.A. Mathematics(Honours)

Paper Type : CORE XIII{Theory}

Paper Code : CMA-313

Paper Title : Multivariate Calculus

Full Marks : 80

Pass Marks : 32

Duration: 3 Hours

The figures in the margin indicate full marks for the questions:

Answer all the question.

1. Choose the correct answer from the following and rewrite:

1 × 3 = 3

a) If $x = r\cos\theta$ and $y = r\sin\theta$, then the value of $\frac{d\theta}{dx}$ is

- | | |
|---------------------------|--------------------------|
| i) $\frac{x}{x^2+y^2}$ | ii) $-\frac{x}{x^2+y^2}$ |
| iii) $-\frac{y}{x^2+y^2}$ | iv) $\frac{y}{x^2+y^2}$ |

b) If $x = r\sin\theta\cos\phi$, $y = r\sin\theta\sin\phi$ and $z = r\cos\theta$, then

$$\int \int \int f(x, y, z) dx dy dz$$

- i) $\int \int \int f(r, \theta, \phi) r^2 \sin\phi dr d\theta d\phi$.
- ii) $\int \int \int f(r, \theta, \phi) r^2 \cos\phi dr d\theta d\phi$.
- iii) $\int \int \int f(r, \theta, \phi) r^2 \cos\theta dr d\theta d\phi$.
- iv) $\int \int \int f(r, \theta, \phi) r^2 \sin\theta dr d\theta d\phi$.

c) The Stoke's Theorem is a relation between

- i) line integral and double integral.
- ii) line integral and surface integral.
- iii) line integral and volume integral.
- iv) surface integral and volume integral.

2. Write very short answer for each of the following questions:

1 × 6 = 6

- a) Find $\frac{\partial^2 z}{\partial x \partial y}$, where $z = x^2 + 2x^2y^2 + y^2$.
- b) Define gradient of a scalar function.
- c) Find $\int_0^2 \int_0^{x^2} e^{\frac{y}{x}} dy dx$.
- d) If (x, y, z) and (z, ρ, ϕ) are the cartesian and cylindrical coordinates of a point P, then write the value of $dxdydz$ in terms of cylindrical coordinates.
- e) If the vector $\vec{V} = (x + 3y)\hat{i} + (y - 2z)\hat{j} + (x + az)\hat{k}$ is solenoidal, then find the value of a.
- f) Find the work done by a force $y\hat{i} - x\hat{j}$ which displaces a particle from origin to the point $(\hat{i} + \hat{j})$.

3. Write short answer for each of the following questions: 3×5=15

- a) Prove that $Y = f(x + at) + g(x - at)$ satisfies $\frac{\partial^2 y}{\partial t^2} = a^2 \left(\frac{\partial^2 y}{\partial x^2} \right)$, where f and g are assumed to be at least twice differentiable and a is any constant.
- b) If $\phi = 3x^2y - y^3z^2$, find grad ϕ at the point (1, -2, -1).
- c) Evaluate $\int \int_R xy dx dy$, where R is the quadrant of the circle $x^2 + y^2 = a^2$ where $x \geq 0, y \geq 0$.
- d) Find the volume of the solid bounded by the parabolic $y^2 + z^2 = 4x$ and the plane $x = 5$.
- e) A vector field is given by $\vec{F} = (2y + 3)\hat{i} + xz\hat{j} + (yz - x)\hat{k}$. Evaluate $\int_c \vec{F} \cdot d\vec{r}$ along the path C where $x = 2t, y = t, z = t^3$ from $t=0$ to $t=1$.

4. Answer any four of the following questions: **4×5=20**

- a) By using $\epsilon - \delta$ definition, prove that $\lim_{(x,y) \rightarrow (2,1)} (3x + 2y) = 8$.
- b) Find the equations of the target plane and the normal line to the surface $2x^2 + y^2 + 2z = 3$ at the point $(2,1,-3)$.
- c) Evaluate $\int_0^{2a} \int_0^{\sqrt{(2a-x^2)}} x^2 dy dx$.
- d) Find the volume bounded by the paraboloid $x^2 + y^2 = az$ and the cylinder $x^2 + y^2 = a^2$.
- e) Prove that $(y^2 - z^2 + 3yz - 3x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.

5. Answer any two of the following questions: **6×2=12**

- a) If $u = f(e^{y-z}, e^{z-x}, e^{x-y})$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- b) Examine $f(x, y) = x^3 + y^3 - 3axy$ for maximum and minimum values.
- c) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.

6. Answer any two of the following questions: **6×2=12**

- a) Evaluate $\int_0^{\frac{\pi}{2}} \int_0^y \cos 2y \sqrt{(1 - a^2 \sin^2 x)} dx dy$.
- b) Change the order of integration and evaluate $\int_0^a \int_0^y \frac{dxdy}{\sqrt{\{(a^2 + x^2)(a - y)(y - x)\}}}$.
- c) Evaluate $\int \int \int_R (x^2 + y^2 + z^2) dx dy dz$ where R denotes the region bounded by $x = 0, y = 0, z = 0$ and $x + y + z = a$ ($a > 0$).

7. Answer any two of the following questions: 6×2=12

- a) Evaluate $\int \int_s \overrightarrow{A} \cdot \hat{n} ds$ where $\overrightarrow{A} = (x + y^2)\hat{i} - 2x\hat{j} + 2yz\hat{k}$ and S is the surface of the plane $2x + y + 2z = 6$ in the first octant.
- b) Using Stoke's Theorem, evaluate $\int_c [(2x - y)dx - yz^2dy - y^2zdz]$, Where C is the circle $x^2 + y^2 = 1$, corresponding to the surface of unit radius.
- c) Apply Guass Theorem to evaluate $\int \int_s \overrightarrow{F} \cdot \hat{n} ds$ where $\overrightarrow{F} = 4x^3\hat{i} - x^2y\hat{j} + x^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = a^2$ bounded by the planes $z = 0$ and $z = b$.
