

DHANAMANJURI UNIVERSITY

Examination- 2023 (Dec)

Three year course B.Sc. 5th Semester

Name of Programme : B.A/B.Sc. Mathematics (Honours)

Semester : 5th

Paper Type : Core-XI (Theory)

Paper Code : CMA-311

Paper Title : Multivariate Calculus

Full Marks : 100

Pass Marks : 40

Duration: 3 Hours

The figures in the margin indicate full marks for the questions

Answer all the questions:

1. Choose the correct answer from the following and rewrite it:

1 × 6 = 6

a) Iterated limits are called

i) double limit	ii) repeated limit
iii) both A and B	iv) neither A nor B

b) The function $f(x,y)$ is said to be continuous in a domain D if it is continuous at

i) one point of D	ii) at each point of D
iii) at least two point of D	iv) Both A and B

c) The condition $\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0, \frac{\partial f}{\partial z} = 0$ for maximum or minimum of a function is

i) necessary condition	ii) Sufficient Condition
iii) A and B both	iv) neither A nor B

d) The value of $\int_{a^2}^a \int_0^{\sqrt{a^2-y^2}} dx dy$ is

i) $\frac{\pi a^2}{4}$	ii) $\frac{\pi a^2}{8}$
iii) $\frac{\pi a^2}{12}$	iv) $\frac{\pi a^2}{16}$

e) A necessary and sufficient condition that the line integral $\int_C \vec{A} \cdot \vec{dr} = 0$ for every closed curve C is that

i) $\text{Div } \vec{A} = 0$	ii) $\text{Cur } \vec{A} = 0$
iii) $\text{div } \vec{A} \neq 0$	iv) $\text{cur } \vec{A} \neq 0$

f) If \vec{F} is the velocity of a flux particle then $\int_C \vec{F} \cdot \vec{dr}$ represents

i) Circulation	ii) Work done
iii) Flux	iv) Conservative field

2. Write very short answer for each of the following questions:

1 × 10 = 10

a) Define limit of a function of two variables.

b) If $f(x,y) = x^3y - xy^3$, find $\left(\frac{1}{\frac{\partial f}{\partial x}} + \frac{1}{\frac{\partial f}{\partial y}}\right)_{x=1, y=2}$

c) Write the expression of total differential for the function $z = f(x,y)$.

d) If $\phi = 3x^2y - y^3z^2$, find grad ϕ .

e) Find the stationary points of $f(x,y) = x^2 + y^2 + 6x + 12$.

f) Evaluate $\int_0^a \int_0^{\sqrt{ay}} xy \, dx \, dy$.

g) Write the double integral $\iint f(x,y) dx \, dy$ into polar coordinates.

h) Evaluate $\int_{-3}^3 \int_0^1 \int_{-1}^2 dx \, dy \, dz$.

i) Define line integral of a vector function.

j) Write the formula for Stoke's theorem.

3. Write short answer for each of the following question:

$3 \times 12 = 36$

a) Let $f(x,y) = \frac{x^2y}{x^4+y^2}$, $x^4 + y^2 \neq 0$ and $f(0,0) = 0$, show that $\lim_{(x,y) \rightarrow (0,0)} \frac{x^2y}{x^4+y^2}$ does not exist.

b) Show that $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & x \neq 0, y \neq 0 \\ 0, & x = 0, y = 0 \end{cases}$ is not continuous at $(0,0)$.

c) If $u = \sin \frac{x}{y} + \log \frac{y}{x}$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

d) Let $z = x^2 + y^2$ where $x = \frac{1}{t}$, $y = t^2$, Find $\frac{dz}{dt}$ in two ways

- i) by first expressing z explicitly in terms of t .
- ii) by using chain rule

e) Find the directional derivatives of $f(x,y) = 3-2x^2 + y^3$ at the point $(1,2)$ in the direction of the unit vector $\vec{u} = \frac{1}{2}\vec{i} - \frac{\sqrt{3}}{2}\vec{j}$

f) Find a unit normal to the surface $x^2 - y^2 + z^2 = 3$ at $(1,-1,1)$

g) Let T be the triangular region enclosed by the lines $y = 0$, $y = 2x$ and $x = 1$, then evaluate $\iint_T (x+y) \, dx \, dy$ using an iterated integral with

- i) y integration first and
- ii) x integration first

h) Find the volume of the solid bounded above by the plane $z = y$ and below in the xy -plane by the part of the disk $x^2 + y^2 \leq 1$ in the first quadrant, where $f(x,y) = y$.

i) Evaluate $\iiint_B z^2 y e^x$, where B is the box given by $0 \leq x \leq 1, 1 \leq y \leq 2, -1 \leq z \leq 1$

j) Evaluate the integral $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) \, dx \, dy$ by changing into polar coordinates.

k) Find the work done where a force $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ moves a particle from origin to $(1,1)$ along a parabola $y^2 = x$.

l) Show that $\vec{F} = yz\vec{i} - xz\vec{j} + xy\vec{k}$ is conservative and find a scalar potential function.

4. Answer any two questions from the following questions:**6 × 2 = 12**

a) Find the equations of the tangent plane and normal line to the surface $z=x^2 - y^2$ at the point (1,1,0).

b) If $V=f(x-y, y-z, z-x)$, then prove that $\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial V}{\partial z} = 0$.

c) Let $f(x,y) = \tan^{-1} \frac{y}{x}$, then find the directional derivative of f at (1,2) in the direction that makes an angle of $\frac{\pi}{3}$ with the positive x-axis.

5. Answer any two questions from the following questions:**6 × 2 = 12**

a) Find the point on the plane $x+2y+z=5$ that is closed to the point (0,3,4).

b) By using Lagrange method, find the maximum and minimum values of $f(x, y, z) = x - y - z$ on the sphere $x^2 + y^2 + z^2 = 100$.

c) Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\vec{i} + (3xz - 2xy)\vec{j} + (3xy - 2xz + 2z)\vec{k}$ is both solenoidal and irrotational.

6. Answer any two questions from the following:**6 × 2 = 12**

a) Evaluate: $\int_0^2 \int_0^{\sqrt{2x-x^2}} y \sqrt{x^2 + y^2} dy dx$ by converting to polar co ordinates.

b) Evaluate: $\iiint_R (x^2 + y^2 + z^2) dx dy dz$, where R denotes the region bounded by $x = 0, y = 0, z = 0$ and $x+y+z=a, a>0$.

c) Find the volume of the solid in the first octant that is bounded by the cylinder $x^2 + y^2 = 2y$, the half cone $z = \sqrt{x^2 + y^2}$ and the xy- plane.

7. Answer any two questions from the following:**6 × 2 = 12**

a) Verify Green's Theorem in the plane $\oint_C [(xy + y^2)dx + x^2dy]$, where C is the closed curve of the region bounded by $y=x$ and $y=x^2$.

b) Evaluate: $\iint_S \vec{A} \cdot \hat{n} ds$ where $\vec{A} = 18z\vec{i} - 12x\vec{j} + 3y\vec{k}$ and S is the part of the plane $2x+3y+6z=12$ included in the first octant.

c) Evaluate: $\iint_S \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ and S is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$ by using the Divergence Theorem.
