

DHANAMANJURI UNIVERSITY

Examination - 2024 (June)

Four-Year Course BA/B.Sc. 4th Semester

Name of Programme : **B.A/B.Sc. Mathematics**
Paper Type : **Core-X(Theory)**
Paper Code : **CMA-210**
Paper Title : **Riemann Integration and Series of Functions**
Full Marks : **40**
Pass Marks : **16**
Duration : **2 Hours**

*The figures in the margin indicate full marks for the questions
Answer the following questions:*

**1. Choose and rewrite the correct answer for each of
the following questions:**

$1 \times 3 = 3$

a) If $f(x) = x - 6$ and $P = \{0, 3, 4, 6\}$ is a partition of $[0, 6]$, then the value of the oscillatory sum $W(P, f)$ is

- i) 7
- ii) 14
- iii) 26
- iv) 32

b) The number of points of infinite discontinuity of the improper integral $\int_3^5 \frac{x^2}{\sqrt{x^2 - 8x + 15}} dx$ is

- i) 1
- ii) 2
- iii) 3
- iv) 4

c) The power series $1 + 2x + 3x^2 + 4x^3 + \dots$, has radius of convergence

- i) 0
- ii) 1
- iii) 2
- iv) ∞

2. Write very short answer on any five from the following questions:

1 × 5 = 5

- a) Give an example of bounded function which is not Riemann integrable.
- b) State fundamental theorem of integral calculus.
- c) Examine the convergence of improper integral $\int_0^\infty \frac{1}{1+x^2} dx$
- d) State Dirichlet's test for convergence of improper integral.
- e) When is a sequence of functions $\{f_n\}$ said to be uniformly convergence in an interval $[a, b]$?
- f) State Weierstrass M-Test (for uniform convergence).

3. Write short answer on any two from the following:

2 × 3 = 6

- a) If P^* is a refinement of a partition P for a bounded function f on $[a, b]$, then prove that $L(P^*, f) \geq L(P, f)$
- b) Give reason for R-integrability of the function $f(x) = x[2x]$ in $[0, 2]$, where $[x]$ denotes the greatest integer not greater than x and evaluate $\int_0^2 f(x) dx$.
- c) Examine the convergence of improper integral $\int_0^1 \log x^4 dx$.

d) Show that $\int_0^\infty \frac{1}{(1+x)\sqrt{x}} dx$ is convergent with value π .

e) Test for uniform convergence the sequence of functions $\{f_n\}$, where $f_n = \frac{nx}{1+n^2x^2}, \forall x \in \mathbf{R}$

4. Write short answer on any two from the following: 2 × 4 = 8

a) Let $f(x) = \sin x$ and $P = \left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}\right\}$ be a partition of interval $\left[0, \frac{5\pi}{6}\right]$.

Find:

- i) $\|P\|$
- ii) $L(P, f)$
- iii) $U(P, f)$

(The symbols have their usual meaning)

b) Prove that every continuous function on $[a, b]$ is integrable on $[a, b]$

c) Show that the improper integral $\int_a^b \frac{1}{(x-a)^p} dx$ converges at a if and only if $p < 1$

d) Show that the sequence $\{f_n\}$, where $f_n(x) = \tan^{-1} nx, x \geq 0$ is uniformly convergent in any interval $[a, b], a > 0$, but is only pointwise convergent in $[0, b]$.

e) If R is the radius of convergence of power series $\sum a_n x^n$, then show that the radius of convergence of power series $\sum n a_n x^{n-1}$ and $\sum \frac{a_n}{n+1} x^{n+1}$ is also R .

5. Answer any one from the following questions: 6 × 1 = 6

a) Let $|f(x)| \leq K, \forall x \in [a, b]$ and P be a partition of $[a, b]$ with norm $\leq \delta$. If P^* is a refinement of P containing just one more point than P , then prove that $U(P^*, f) \leq U(P, f) \leq U(P^*, f) + 2K\delta$.

b) State a necessary and sufficient condition for integrability of a bounded function f on an interval $[a, b]$ and prove the same.

c) If f_1 and f_2 are both bounded and integrable functions on $[a, b]$, then prove that $f = f_1 + f_2$ is also bounded and integrable on $[a, b]$ and

$$\int_a^b f_1(x) dx + \int_a^b f_2(x) dx = \int_a^b f(x) dx.$$

6. Answer any one from the following questions: **$6 \times 1 = 6$**

a) Test the convergence of the improper integral $\int_0^1 x^{m-1}(1-x)^{n-1}dx$.

b) Show that $\int_0^\infty \frac{dx}{(1+x^2)^2}$ is convergent.

7. Answer any one from the following questions: **$6 \times 1 = 6$**

a) State Cauchy's Criterion for uniform convergence. Also prove the same.

b) Determine the radius of convergence and the exact interval of convergence of the power series $\sum \frac{n+1}{(n+2)(n+3)} x^n$.

c) State and prove Abel's theorem for power series.