

DHANAMANJURI UNIVERSITY

JUNE - 2023

Name of Programme	:	B.Sc. Mathematics (Honours)
Semester	:	4th
Paper Type	:	Core-IX (Theory)
Paper Code	:	CMA-209
Paper Title	:	Ring Theory and Linear Algebra I
Full Mark	:	50
Pass Mark	:	20
Duration	:	2 Hours

The figures in the margin indicate full marks for the questions.

Answer only 5 (five) from the following questions:

1. Define Rank and Nullity of a linear transformation T . Also state and prove Rank-Nullity theorem. $2+8=10$
2. Define ordered basis of a finite dimensional vector space. 1
Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by $T(x, y, z) = (x + y, 2z - x)$.
 - i) If β and β' are standard ordered basis for \mathbb{R}^3 and \mathbb{R}^2 respectively, find $[T]_{\beta, \beta'}$. 4
 - ii) If $\beta = \{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$ and $\beta' = \{(0, 1), (1, 0)\}$ are ordered basis for \mathbb{R}^3 and \mathbb{R}^2 respectively, find $[T]_{\beta, \beta'}$. 5
3. If M and N are two ideals of a ring R , then prove that $\frac{M+N}{M} \cong \frac{N}{M \cap N}$. Also find all the six ring homomorphisms from $\mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$. 6+4=10
4. Prove that a basis of a vector space is the maximal linearly independent set, and conversely. 10
5.
 - i) Let W be a subspace of a finite dimensional vector space V . Then prove that $\dim V = \dim W + \dim V/W$. 7
 - ii) Show that the vectors $\{(1, 1, 2), (1, 2, 5), (5, 3, 4)\}$ are linearly dependent in \mathbb{R}^3 . 3
6. Define subspace of a vector space. Let V be the vector space of all functions from $\mathbb{R} \rightarrow \mathbb{R}$. Let $V_e = \{f \in V \mid f \text{ is even}\}$ and $V_o = \{f \in V \mid f \text{ is odd}\}$. Then prove that V_e and V_o are subspaces of V , and $V = V_e \oplus V_o$. 10
7. Define prime ideal of a ring. Also prove that an ideal P of a commutative ring R is a prime ideal of R iff $\frac{R}{P}$ is an integral domain. 10
8.
 - i) If A and B are two ideals of a ring R , then prove that $A + B$ is an ideal containing both A and B . Also show that $A + B = \langle A \cup B \rangle$. 5
 - ii) If A is an ideal of a ring R with unity such that $1 \in A$. Then show that $A = R$. 5
9.
 - i) Prove that a finite commutative ring without zero divisors is a field. 5
 - ii) Prove that every ideal is a subring. Is the converse true? Justify. 5
10.
 - i) Let S be a subset of a vector space V . Prove that the linear span $L(S)$ of S is the smallest subspace of V containing S . 5
 - ii) Is the transformation $T : \mathbb{R} \rightarrow \mathbb{R}^3$ defined by $T(x) = (x, x^2, x^3)$ linear. 2
 - iii) Show that in a vector space $V(F)$:
 - i. $\alpha v_1 = \alpha v_2 \implies v_1 = v_2 (\alpha \neq 0)$. 2
 - ii. $\alpha v = 0, \alpha \neq 0 \implies v = 0$. 1