

Dhanamanjuri University

JUNE 2022

Name of Programme	:	B.Sc Mathematics (Honours)
Semester	:	II
Paper Type	:	Core IV
Paper Code	:	CMA-104
Paper Title	:	Differential Equations
Full Marks	:	100
Duration	:	3 Hours

1. Choose and rewrite the correct answer for each of the following questions:

(a) The integrating factor of the group of terms as being part of an exact differential equation $\frac{xdy - ydx}{x^2}$, is

- (i) $d\left(\frac{x}{y}\right)$
- (ii) $d\left(\log\frac{y}{x}\right)$
- (iii) $d\left(\log\frac{x}{y}\right)$
- (iv) $d\left(\frac{y}{x}\right)$

(b) The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} + 5\left(\frac{dy}{dx}\right)^4 + 8y = \log x$ is

- (i) (3,4)
- (ii) (2,3)
- (iii) (4,3)
- (iv) (3,1)

(c) The complementary solution of the equation $(D^2 + 4)y = 0$ is

- (i) $\cos 2x + i \sin 2x$
- (ii) $e^{-2x}(\cos x + \sin x)$
- (iii) $\cos 2x + \sin 2x$
- (iv) $e^{2x}(\cos x + \sin x)$

(d) In the Lake Pollution Model of equation $\frac{dM}{dt} = C_{in}(t) \otimes Q_{in}(t) - C_{out}(t) \otimes Q_{out}(t)$, the volumetric flow rate through the lake is denoted by:

- (i) C
- (ii) M
- (iii) t
- (iv) Q

(e) The solution of the differential equation $\tan y dx + \tan x dy = 0$ is

- (i) $\sin x \sin y = c$
- (ii) $\sin x \cos y = c$
- (iii) $\cos x \cos y = c$
- (iv) $\cos x \sin y = c$

2. Write very short answer for each of the following questions:

- (a) What is an integrating factor?
- (b) Define Wronskian of a differential equation.
- (c) Write the length formula of the Cartesian tangent.
- (d) Define a non-linear differential equation.
- (e) What do you mean by orthogonal trajectory?
- (f) Name the two solutions involved in the general solution of a non-homogeneous differential equation.
- (g) When the method of variation of parameters be applied for solving a non-homogeneous linear differential equation?
- (h) What do you mean by battle model in a differential equation?
- (i) Why is drug assimilation into the blood modeled?
- (j) What is that condition that the equation $Mdx + Ndy = 0$ will be exact?
- (k) Which differential equation is known as the extension form of Clairaut's equation?

3. Write short answers for each of the following questions:

- (a) What is Mathematical Modelling? Write the applications of Mathematical Modelling.
- (b) If the complementary function (y_c) of a differential equation is $c_1e^x + c_2e^{-x} + c_3e^{2x} + c_4e^{-2x}$, then find the roots of the auxiliary equation (AE).
- (c) Solve $(x^4e^x - 2axy^2)dx + 2ax^2ydy = 0$
- (d) Define homogeneous linear equation or Cauchy-Euler equations.
- (e) What is the condition that the equation of the type $Mdx + Ndy = 0$ are function of x and y to be exact?
- (f) What are equilibrium points in differential equation?
- (g) Define singular solution. What is the singular solution of the differential equation of the form $y = px + \frac{a}{p}$, where $p = \frac{dy}{dx}$
- (h) Solve $x^2\frac{dy}{dx} + y = 1$

4. Answer any two parts:

- (a) Solve the equation $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$
- (b) Solve the Clairaut's equation $p(p^2 + xy) = p^2(x + y)$ and obtain the singular solution
- (c) In a certain culture of bacteria, the rate of increase is proportional to the number present. If it be found that their number double in 4 hours. What will be their number at the end of 12 hours?
- (d) Solve $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$
- (e) Prove that $e^{\int p dx}$ is an integrating factor to the linear equation $\frac{dy}{dx} + Py = Q$ where P and Q are function of x alone or constant
- (f) Define the term Epidemiology. Derive a mathematical model to solve an epidemic problem by assuming N_i = the number of infected student at any time and N_u = the number of uninfected student. Also draw the logistic curve of the above model.
- (g) What is the Bernoulli's form of ordinary differential equation? Show that such an equation can be reduced to the linear form of a differential equation.
- (h) Write down the method of solution of the equation of the form

$$y = px + f(p) \quad \text{where } p = \frac{dy}{dx}$$

5. Answer any two parts:

(a) Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x + e^{3x}$

(b) Write the necessary condition for the integrability of a Pfaffian differential equation $Pdx + Qdy + Rdz = 0$

(c) Show that the orthogonal trajectories of the system of coaxial circles $x^2 + y^2 + 2\lambda x + c = 0$ form another system of coaxial circles $x^2 + y^2 + 2\mu y - c = 0$, where λ and μ are parameters and c is a given constant.

6. Answer any two parts:

(a) Solve, by the method of variation of parameters, the equation $\frac{d^2y}{dx^2} + y = \sec x \tan x$

(b) Solve $yz \log z dx - zx \log z dy + xyz dz = 0$

(c) The rate at which radioactive substance is proportional to the number of atoms present at any instant. If initially there are N_0 atoms at times t_0 , find the number of atoms N at any instant t .

7. Answer any two parts:

(a) Solve $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10 \left(x + \frac{1}{x} \right)$

(b) Reduce the equation $\sin y \frac{dy}{dx} = \cos x (2 \cos y - \sin^2 x)$ to a linear differential equation and solve it.

(c) Solve $(D^2 - 4D + 4)y = 8x^2 e^{2x} \cos 2x$