

DHANAMANJURI UNIVERSITY

Examination, 2023 (Dec)

Four year course B.Sc. 1st Semester**Name of Programme : B.A/B.Sc. Mathematics (Honours)****Semester : I****Paper Type : Core-I (Theory)****Paper Code : CMA-101****Paper Title : Calculus****Full Marks : 80****Pass Marks : 32****Duration: 3 Hours***The figures in the margin indicate full marks for the questions**All the questions.*

- 1. Choose the correct answers for each of the following questions:**

 $1 \times 4 = 4$ a) If $y = \log(x+a)$, then y_n is

i) $\frac{(-1)^n n!}{(x+a)^{n+1}}$

ii) $\frac{(-1)^{n+1} (n+1)!}{(x+a)^n}$

iii) $\frac{(-1)^{n-1} (n-1)!}{(x+a)^n}$

iv) $\frac{(-1)^n (n-1)!}{(x+a)^{n-1}}$

b) If $x = r\cos\theta, y = r\sin\theta$, then $\frac{\partial\theta}{\partial x}$ is equal to

i) $\frac{y}{x^2+y^2}$

ii) $\frac{-y}{x^2+y^2}$

iii) $\frac{x}{x^2+y^2}$

iv) $\frac{-x}{x^2+y^2}$

c) The whole area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

i) $\frac{1}{4}\pi ab$

ii) $\frac{1}{2}\pi ab$

iii) $\frac{1}{3}\pi ab$

iv) πab

- d) The radius of curvature at any point for the curve

$$x = a(\cos t + t \sin t), y = a(\sin t - t \cos t)$$

- iii) at iv) $\sqrt{a} t$

2. Write very short answer for each of the following questions:

$$1 \times 10 = 10$$

- a) If $y = A\sin mx + B\cos mx$, prove that $y_2 + m^2y = 0$.

- b) Find the value of c in the Mean Value Theorem

$$f(b) - f(a) = (b - a)f'(c) \text{ if } f(x) = x^2, a = 1, b = 2$$

- c) When is a function $f(x,y)$ said to be homogeneous of degree n ?

- d) Find the radius of curvature at any point (s, ψ) on the curve $s = \log \sin \psi$.

- e) Prove that $y = e^x$ is everywhere concave upwards.

- f) Find the point on which the curve $y = x^3 - 3ax^2$ meets the $x - axis$.

- g) Is the curve $r=a(1+\cos\theta)$ symmetric about the initial line?

h) Evaluate: $\int_0^{\frac{\pi}{2}} \sin^2 x dx$

- i) Write $\iint f(x, y) dx dy$ into polar co-ordinates.

j) Find the value of $\int_0^2 \int_{x^2}^{2-x} xy \, dy \, dx$.

3. Write short answer for each of the following questions:

$$3 \times 10 = 30$$

- a) If $y = x^3 \sin x$, find y_n ?

- b) In the Mean value theorem $f(a+h) = f(h) + hf'(a+\theta h)$, if $a=1$, $h=3$ and $f(h) = \sqrt{h}$, find θ .

- c) Expand the function e^x in a finite series in powers of x , with the remainder in Cauchy's form in each case.

- d) If $u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$ Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.
- e) State and prove Euler's theorem on homogeneous function of two variables.
- f) Find the radius of the curvature of $y^2 = 4ax$ at any point (x, y) .
- g) Find the radius of the curvature of $r = a(1 - \cos \theta)$ at any point (r, θ) .
- h) Find the points of inflection of the curve $y = ae^{-8x^2}$.
- i) Find the length of an arc of the curve $y = \log \sec x$ from $x=0$ to $x = \frac{\pi}{3}$.
- j) Evaluate $\iint xy dx dy$ over the region in the positive quadrant in which $x + y \leq 1$.

4. Answer any two questions:

$6 \times 2 = 12$

- a) If $y = \sin^{-1} x$, then show that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - x^2y_n = 0$$

Find also the value of $(y_n)_0$

- b) State and prove Lagrange's Mean value theorem.

c) Find the values of a, b, c so that $\lim_{x \rightarrow 0} \frac{ae^x - b\cos x + ce^{-x}}{x \sin x} = 2$.

5. Answer any two questions:

$6 \times 2 = 12$

- a) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{3}{(x+y+z)^3}$$

- b) If $f_{xy}(x, y) = xy \frac{x^2 - y}{x^2 - y^2}$, when both $x, y \neq 0$, $f(0, 0) = 0$, show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

- c) Find the maximum values of the function

$$f(x, y) = xy(a - x - y).$$

6. Answer any two questions:

$6 \times 2 = 12$

- a) Show that

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \cos^n x \, dx = \begin{cases} \frac{n-1}{n}, \frac{n-3}{n-2}, \frac{n-5}{n-4}, \dots \dots \dots \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\ \frac{n-1}{n}, \frac{n-3}{n-2}, \frac{n-5}{n-4}, \dots \dots \dots \frac{4}{5} \cdot \frac{2}{3} \cdot 1 \end{cases}$$

according as n is even or odd integer

- b) Show that the area cut off a parabola $y^2 = 4ax$ by any double ordinates is $\frac{2}{3}$ of the corresponding rectangle contained by that double ordinate and its distance from the vertex.
- c) Find the volume and surface area of the solid generated by revolving the cycloid $x=a(\theta + \sin \theta)$, $y=a(1+\cos \theta)$ about its base.
